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Motivation

• Powerplant personnel are reliant on sensors to determine 

operational parameters during dynamic energy loads.

• Heat flux measurements at the boiler wall or economizer can 

help determine combustion efficiency or system health.

• Current state-of-the-art heat flux gauges are not compatible 

with extreme boiler environments.
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Objectives

• Develop a heat flux measurement system compatible with

• Operating temperatures in excess of 750°C.

• Oxidative, corrosive, and erosive environments.

• Soot or deposition of combustion products.
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Heat Flux Sensor Design

• Transverse Seebeck Effect-based heat flux sensor head.
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Beta Sensor Development

• Prototype Antimony-based Heat Flux Sensor.
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Beta Sensor Development

• Sensor optimization through simulation.
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Sensor Design Optimization

• Transduction mechanism Δ𝑉 = 𝑓𝐿𝑞 is only valid if the heat flux 

in the prismatic crystals is uniform.

• ANSYS thermal simulations were used to optimize the sensor 

package design to increase heat flux uniformity.
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Optimization Through Simulation

10 |   2022 NETL FECM Spring R&D Project Review Meeting

X Y

Z

Z

Y

• Comparing temperature contours plots demonstrates 

improvements in heat flux uniformity. 

Z

Y



Lessons Learned Through Simulations

• To maximize heat flux uniformity

• Decrease package — crystal thermal conductivity mismatch.

• Minimize thermal resistance in heat flux collector.

• Incorporate insulating features between the side walls of the crystals 

and the package.

• Arrange crystals symmetrically across mirror plane with minimal gap.
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Beta Sensor Development

• Large single crystal pellet → prismatic crystals.
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Seebeck Coefficient Measurements

• The crystals used for transverse Seebeck effect-based sensing 

must have an anisotropic Seebeck coefficient tensor.

• In Antimony crystals 𝑆11 = 𝑆22 > 𝑆33
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Seebeck Coefficient Measurements
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Sensor Element Fabrication
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Beta Sensor Development

• Characterization of individual Antimony prismatic sensors.
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Sensor Element Voltage Response

• The total voltage response in Sb 

prismatic sensors can be expressed as

𝚫𝑽 = 𝐶1𝚫𝑻𝑳 + 𝐶2
𝐿

𝐻
𝚫𝑻𝑯

• Where

• Δ𝑉 = 𝑉+ − 𝑉−

• 𝐶1 = −(𝑆11 cos
2 𝜃 + 𝑆33 sin

2 𝜃)

• 𝐶2 = − 𝑆33 − 𝑆11 sin 𝜃 cos 𝜃
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Heat 

Sink

Characterizing Antimony Sensors

• The thermoelectric parameters of the sensor element (𝐶1 and 

𝐶2) were determined by subjecting the crystal to multiple 

heating scenarios.
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Prismatic Antimony Sensor Response

• The voltage response can be represented 

as a planar surface.

𝚫𝑽 = 𝐶1𝚫𝑻𝑳 + 𝐶2
𝐿

𝐻
𝚫𝑻𝑯

• For Antimony prismatic sensing elements

• 𝐶1 = −32.8 µ𝑉/𝐾 → Matches predictions

• 𝐶2 = 2.12 µ𝑉/𝐾 → Smaller than predicted
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Conclusions

• Have produced single crystal Antimony sensing elements and 

characterized full anisotropic thermoelectric response.

• Demonstrated optimization of package configuration tailored 

towards heat flux uniformity.

• Have begun assembly of transverse Seebeck effect-based heat 

flux sensor (Beta version).
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Milestones 
(performance period 0-15 months)

• One-dimensional Heat Flow – Demonstration of a sensor head 

design for which heat flow through the thermoelectric sensing 

element is one-dimensional.

• Status: 100% complete

• Transverse Seebeck Prototype – Demonstration of analog 

electrical signal generation by the single crystal chain. The 

signal shall be a monotonic function of the heat flux. 

• Status: 80% complete
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Future Work

• Demonstrate the voltage response of a fully assembled 

Antimony-based heat flux sensor.

• Fabricate and characterize the thermoelectric response of 

Rhenium prismatic sensing elements.

• Demonstrate high-temperature heat flux sensing capabilities.
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Questions?
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